a2 United States Patent

Sreedharan et al.

US009348878B2

(10) Patent No.: US 9,348,878 B2
(45) Date of Patent: May 24, 2016

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(1)

(52)

ITERATIVE APPROACH TO DETECT
OUTLIERS

Applicant: SAP SE, Walldorf (DE)

Inventors: Unmesh Sreedharan, Walldorf (DE);
Ajay Kumar Gupta, Walldorf (DE);
John MacGregor, Walldorf (DE);
Chandrashekar Vasudevan, Walldorf
(DE)

Assignee: SAP SE, Walldorf (DE)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 410 days.

Appl. No.: 14/107,561

Filed: Dec. 16, 2013

Prior Publication Data

US 2015/0169706 Al Jun. 18, 2015

Int. Cl1.

GO6F 17/30 (2006.01)

U.S. CL

CPC . GO6F 17/30554 (2013.01)

(58) Field of Classification Search
CPC combination set(s) only.
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2015/0286707 Al* 10/2015 Levitan GO6F 17/30598
707/737

* cited by examiner

Primary Examiner — Etienne Leroux
(74) Attorney, Agent, or Firm — Dilworth IP LLC

(57) ABSTRACT

An iterative approach to detect outliers may automatically
detect outliers in a data set. The iterative approach may
include calculating a mean and an average deviation for a list.
The iterative approach may further include calculating the
deviations of values of a list if the average deviation is not
zero. Any values where the calculated deviation of the point
or value is greater than the mean may be selected. The
selected points may be set as a second list. The second list
may be used by the iterative approach until no points are
selected for the second list. The previous list is the set of
outliers from the data set.

20 Claims, 5 Drawing Sheets

300
302 {
Calculate Mean and L~
Average Deviation of (8
List
212 b
Calculate Deviation from Sclect Values for new List

Average

Deviation = (7 .
. on = No List

- Mean for Fach Value in

Where the Deviation is
Greater Than the Mean

¥

Terminate Process.
§ List Has Wo Outliers, J

Terminate Process.
List Has All Quthiers.

< Length of New™ N
List=07 g

Retrieve Previous List
and Asgsign as List

U.S. Patent May 24, 2016 Sheet 1 of 5 US 9,348,878 B2

Backend System

T 120
{
/

é Predictive Analysis System 130

Pata Acguisition Module {4124

: N

Algorithm Module 1

i

Drata Writer Module

Predictive Analysis
Data Store

N

i

Predictive Analysis Server
8

150~

{40

¥ ¥
Request F"mc-essmg Visualization Module
Module
) Client Device)
! X
142 144

FI1G. 1

8,878 B2

U.S. Patent May 24, 2016 Sheet 2 of 5 US 9,34
Automatic Outlier Detecting —~_L 200
Module
. c - 24
Data Acquisition Module N 124
2
Predictive Analysis Server N 122
300
: 302 {
{Calculate Mean and L~
Average Deviation of e
List
304 312 34
Averas: Calculate Deviation from Select Values for new List
Averge g Mean for Each Value in b~ Where the Deviation is

Deviation = (7

List

Greater Than the Mean

Terminate Process. 3
% List Has No QOutliers. /

308

Terminate Process.

FIG. 3

Lisl Has All Qutliers.

7 Length of New™
List =7

Retreve Previous List

and Assign as List

U.S. Patent May 24, 2016 Sheet 3 of 5 US 9,348,878 B2

{ 400
416
Receiving a Data Set Having a Plorality of Values o’

i’ 420

Calculating a Set of Distances of Each Value to a Predetermined »
Nuymber of Nearest Values of the Data Set

é 430

Calculating an Average Distance of the Bach Value Based on the Setof | s
Distances

Determining 3 Set of Values of the Plurality of Values of the Data Sct as j(

2 Set of Outliers

FIG. 4

440
{ 442

Generating a List Based on the Plurality of Values and the Average |
Diastance tor Each Vahue ot the Plurality of Values

¥
: - < - : e — 444
Calculating a Moean of the Generated List and an Average Deviation of »

the Generated List

¥ .
Csaleulating a Deviation from the Calculated Mean for Each Value of the Mﬁ%
List

é 448

Determining if a Deviation is Greater Than the Caleulated Mean !

k2
o : e - T 4580
Determining a Set of Values Having a Calculated Deviation Greater |
Than the Calculated Mean if a Doviation 1s Greater Than the Mean
x4 452

__1 Setting the Set of Values as the List if a Deviation is Greater Thanthe | s
Calculated Mean

¥
Setting the List as the Set of Outliers if a Deviation s not Greater Than
the Calculated Mean

FIG. 5

454

\

U.S. Patent May 24, 2016 Sheet 4 of 5 US 9,348,878 B2

SO0
4

502
Recetving a Data Set Having a Plarality of Values .

= e . = . 504
Caleunlating a Sct of Distances of Each Value to a Predotormined w;

Number of Nearest Values of the Data St

- ‘ : Lo . 506

Calculating an Average Distance of the Each Value Based on the Setof | s
Distances

- ‘ . Fo . 508

Generating a List Based on the Plurality of Values and the Average |
Distance for Each Yalue of the Plyrality of Values

: : e e ey ()

Caiculating a Mean of the Generated List and an Average Deviation of .
the Generated List

A e . o et 512

Caleulating a Deviation from the Caleulated Mean for Each Value ofthe]
fist

o Reamerey Forr o 514

Determining a Set of Values Having a Calculated Deviation Greater »
Than the Calculated Mean if 4 Deviation 1s Greater Than the Mean
h 4 316

Dictermining a Set of Values of the Plurality of Values of the Data Set as
a Set of Outliers

F1G. 6

US 9,348,878 B2

U.S. Patent May 24, 2016 Sheet 5 of 5
T3
)
{ 715 720 725
. (i 8) o 3
735 Main . Storage
'} &
) Memory ROM Device
: A 705
Display | I e
‘ <
i
- Bus
r

Input Device
¥
e 710 .
(Processor ,340

~
(as
<

N . [
Commumcations
Module

F1G. 7

US 9,348,878 B2

1
ITERATIVE APPROACH TO DETECT
OUTLIERS

BACKGROUND

Entities, such as businesses, may utilize backend systems
to store big data. Such data may be used, in some instances,
for analysis and/or reporting for the entity about the perfor-
mance of the entity. In some instances, an analysis of such
data may be performed to determine outliers in a data set.
Outlier detection may be adapted for a specific application,
such as eliminating outliers in sales data, in census data (e.g.,
human census data, wildlife census data, etc), or other appli-
cations where outlier detection may be useful.

A K-Nearest Neighbor algorithm (“KNN”) is a classifica-
tion algorithm used for grouping points or values under con-
sideration using the k nearest neighbors based on the Euclid-
ean distance between the point or value and the neighbor,
where k determines the number of nearest neighbors to be
considered for the calculation.

SUMMARY

One embodiment of the invention relates to a method for
iteratively detecting outliers. The method may include receiv-
ing a data set having a plurality of values. For each value of the
plurality of values in the data set, the method includes calcu-
lating a set of Euclidean distances of each value to a prede-
termined number of other nearest values of the plurality of
values in the data set and calculating an average distance of
each value based on the set of Euclidean distances. The
method further includes generating a first list based on the
plurality of values and the average distance for each value of
the plurality of values, and sorting the generated first list
based on the average distance for each value. The method may
also include calculating a first mean of the generated first list
and a first average deviation of the generated first list, and
calculating, for each value of the first list, a first deviation
from the calculated first mean. The method still further
includes determining a set of values having a calculated first
deviation greater than the calculated first mean, and generat-
ing a second list based on the determined set and the average
distance for each value of the determined set. The method
includes calculating a second mean of the generated second
list and a second average deviation of the generated second
list, and calculating, for each value of generated second list, a
second deviation from the calculated second mean. The
method also includes determining a set of values of the plu-
rality of values of the data set as a set of outliers based on the
second list, the calculated second mean, and the calculated
second deviation for each value of the generated second list.

In another implementation, a system includes one or more
processors and a non-transitory computer-readable storage
device storing instructions that, when executed by the one or
more processors, cause the one or more processors to perform
several operations. The operations include receiving a data set
having a plurality of values and, for each value of the plurality
of values in the data set, calculating a set of Euclidean dis-
tances of each value to a predetermined number of other
nearest values of the plurality of values in the data set and
calculating an average distance based on the set of Euclidean
distances. The operations also include determining a set of
values of the plurality of values of the data set as a set of
outliers. The determination of the set of values as a set of
outliers includes generating a list based on the plurality of
values and the average distance for each value of the plurality
of'values. The determination also includes calculating a mean

20

40

45

55

2

of'the generated list and an average deviation of the generated
list, and, for each value of the list, calculating a deviation from
the calculated mean. The determination further includes
determining if a deviation is greater than the calculated mean
and, if a deviation is greater than the calculated mean, deter-
mining a set of values having a calculated deviation greater
than the calculated mean and setting the set of values as the
list. If a deviation is not greater than the calculated mean, then
the determination may include setting the list as the set of
outliers.

Inyeta further implementation, a non-transitory computer-
readable storage device may store instructions that, when
executed by one or more processors, cause the one or more
processors to perform several operations. The operations may
include receiving a data set having a plurality of values. For
each value of the plurality of values in the data set, the opera-
tions may include calculating a set of Euclidean distances of
each value to a predetermined number of other nearest values
of the plurality of values in the data set and calculating an
average distance based on the set of Euclidean distances. The
operations further include generating a first list based on the
plurality of values and the average distance for each value,
and calculating a first mean of the generated first list and a first
average deviation of the generated first list. The operations
still further include determining if the first average deviation
is equal to zero and, if the first average deviation is equal to
zero, setting the first list as a set of outliers. If the first average
deviation is not equal to zero, then the operations may include
calculating, for each value of the first list, a first deviation
from the calculated first mean and determining if a first devia-
tion is greater than the calculated first mean. If a first deviation
is greater than the calculated first mean, then the operations
may include determining a set of values having a calculated
first deviation greater than the calculated first mean and gen-
erating a second list based on the determined set and the
average distance for each value of the determined set. Ifa first
deviation is not greater than the calculated first mean, then the
operations include setting the first list as the set of outliers.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments taught herein are illustrated by way
of'example, and not by way of limitation, in the figures of the
accompanying drawings, in which:

FIG. 1 is an overview block diagram of an example system
for predictive analysis that may utilize an iterative approach
to automatically detect outliers in a data set;

FIG. 2 is a block diagram of an example data acquisition
module of the predictive analysis server that includes an
automatic outlier detecting module:

FIG. 3 is a flow diagram for an example iterative approach
to automatically detect outliers in a data set;

FIG. 4 is a flow diagram of an example process for auto-
matically detecting outliers in a data set;

FIG. 5 is a flow diagram of an example sub-process for
iteratively automatically detecting outliers in a data set that
may be implemented with the process of FIG. 4;

FIG. 6 is a flow diagram of another example process for
iteratively automatically detecting outliers in a data set; and

FIG. 7 is a block diagram illustrating an architecture for a
computer system that may be employed to implement various
elements of the systems and methods.

It will be recognized that some or all of the figures are
schematic representations for purposes of illustration only.
The figures are provided for the purpose of illustrating one or

US 9,348,878 B2

3

more implementations with the explicit understanding that
they will not be used to limit the scope or the meaning of the
claims.

DETAILED DESCRIPTION

The following is merely provided for example purposes
with the explicit understanding that the examples described
herein will not be used to limit the scope or the meaning of the
claims.

1. OVERVIEW

Entities, such as businesses, utilize data in a variety of
ways. For example, businesses may collect and integrate busi-
ness data into business databases and/or data warehouses and
report or otherwise utilize the data using business software. In
some instances, such business data is utilized by data scien-
tists with predictive algorithms to generate predicted data
based on current and/or historical data. Such data scientists,
with the assistance of information technology professionals,
help organize and use predictive algorithms to generate ana-
Iytical reports based on the predictions. The data scientists
identify a suitable algorithm and the corresponding data
stored in a database of a backend system for requested pre-
dicted data. A plethora of algorithms exist for a wide variety
of predicted data. Thus, such predictive analysis may require
an intermediary between the end user and the underlying
algorithms and data.

In addition to, or in lieu of, such predictive algorithms
usage, the determination of the suitability of the underlying
current and/or historical data may be useful to eliminate out-
liers from the data that might skew or otherwise adversely
affect predictions from the predictive algorithms. One algo-
rithm that may be used to eliminate outliers from a data set
may be the K-Nearest Neighbor algorithm (“KNN”). The
KNN algorithm is a classification algorithm that works on
grouping points and/or values of a data set under consider-
ation using the k nearest neighbors based on the Euclidean
distance between the point or value and the neighbor, where k
determines the number of nearest neighbors to be considered
for the calculation.

In some conventional implementations of the KNN algo-
rithm, the outlier detection and elimination finds the average
distance of the k nearest neighbors. All the values from the
column under consideration may be sorted based on the
descending or ascending values of the average distance to the
point’s or value’s nearest neighbors. In some prior implemen-
tations, the user is queried for the number and/or percent of
outliers to be removed from the data set. Based on the user
input the points or values are eliminated from the top of the
sorted list until the requested number of outliers have been
removed.

Thus, for some conventional implementations of the KNN
Algorithm, a parameter specifying the number of outliers that
need to be detected in the data set may be required from a user.
The algorithm then proceeds to detect the specified number of
outliers from the data set based on the maximum average
distance of the values with its k nearest neighbors. However,
this requirement assumes that the user has some knowledge
about the data set prior to running the algorithm, which might
not be the case. That is, if the user does not know the number
of outliers to be removed from the data set, then the user may
use an arbitrary value, which may cause a fewer or a greater
number of outliers to be removed than the actual number of
outliers in the data set. Instead, this behavior mechanically
classifies a certain pre-specified number of data points as

10

15

20

25

30

35

40

45

50

55

60

4

outliers. If a data set contains a truly unknown number of
outliers, this algorithm cannot detect them on its own.
Accordingly, it may be useful to include a method or system
that can auto detect the number of outliers for a given data set.

In some conventional implementations, the KNN algo-
rithm calculates the average distance for each data point for a
given data set from the knearest neighbors, and then selects N
points that have the least average distances, where N is an
input parameter, such as a user-defined input parameter. The
steps for detecting the outliers from a data set using a con-
ventional implementation of the KNN algorithm may
include: (1) calculating a Euclidean distance of each point or
value of a data set from the point’s or value’s k nearest
neighbors; (2) calculating the average of these distances and
assigning the average distance to each point or value; (3)
sorting the data set based on the average distances; and (4)
selecting the top N values of the average distances as the
outliers and eliminating the N number of outliers from the
data set.

To eliminate the input parameter N, an iterative method of
separating the outliers from the data set may be implemented
based on average deviation and mean. Accordingly, this
method has the advantage of automatically detecting the
actual number of outliers in the data set rather than selecting
a pre-specified number as outliers. Thus, a user provided
value of N, which may be an estimate of the actual number of
outliers and may not be dependable, is no longer used.

To determine the number of outliers automatically, the first
three steps of the above workflow may remain the same. That
is, the initial steps for detecting the outliers from a data set
may include: (1) calculating a Euclidean distance of each
point or value of a data set from the point’s or value’s k nearest
neighbors; (2) calculating the average of these distances and
assigning the average distance to each point or value; and (3)
sorting the data set based on the average distances. The
remaining part of the algorithm described herein utilizes the
list of distances, which may be referred to as list. This list may
be sorted in ascending order and the length of this list may be
L, which is equal to the number of data points of the list. As
will be described in greater detail herein, an iterative process
may be applied to the list to automatically detect outliers of
the data set.

Generally referring to FIGS. 1-6, the process for automati-
cally detecting outliers for a data set may include: (1) calcu-
lating a mean and an average deviation for a list; (2) deter-
mining whether the average deviation is equal to zero; (3) if
the average deviation is zero, determining if the current itera-
tion is the first iteration; (4) if the average deviation is zero
and the current iteration is the first iteration, determining that
the list contains all outliers and terminating the process; (5) if
the average deviation is zero and the current iteration is not
the first iteration, then determining that the list contains no
outliers and terminating the process; (6) if the average devia-
tion is not zero, calculating the deviation of a point or value of
the list from the mean; (7) selecting any points or values
where the calculated deviation of the point or value is greater
than the mean and setting the selected points as a second list;
(8) determining ifthe second list contains any points or values
based on a length of the list; and either (9) if the second list
contains no points or values (e.g., the length of the second list
is zero), then determining that the prior list contains all the
outliers and terminating the process or (10) if the second list
contains any points or values, iterating through steps (1)
through (10) until the process terminates.

In some implementations, the process for automatically
detecting outliers for a data set may include determining a
first subset of data points as potential outliers, determining a

US 9,348,878 B2

5

second subset using the first subset of data points, and, if the
second subset contains no data points, determining that the
first subset of data points is the set of outlier data points, or, if
the second subset contains data points, determining a third
subset using the second subset. In some implementations, the
first subset of data points may be determined based on a
calculated deviation of each data point being greater than a
mean of the data set. In some implementations, the process for
automatically detecting outliers may include calculating a
mean and an average deviation for the data set. In some
implementations, a KNN algorithm may be used to calculate
an average distance of each data point of the data set from the
each data point’s k nearest neighbors and assigning the aver-
age distance to each data point. In some further implementa-
tions, the process may include determining whether a calcu-
lated average deviation of the data set is equal to zero,
determining if the current iteration is the first iteration if the
average deviation is zero, and determining that the data set
contains all outliers if the current iteration is the first iteration
or determining that the data set contains no outliers if the
current iteration is not the first iteration.

While the foregoing provides a general overview for auto-
matically detecting outliers in a data set via an iterative
approach, examples of systems and methods for implement-
ing the foregoing will now be described in greater detail.

II. EXAMPLE SYSTEM

FIG. 1 depicts an example system 100 that may utilize a
method for automatically detecting outliers in a data set. The
system 100 is a system for providing predictive analysis data
to a client device 140, though it should be understood that
other systems that may utilize a method for automatically
detecting outliers in a data set may be used and the present
system 100 is merely an example. The system 100 includes a
backend system 110, a predictive analysis system 120, and a
client device 140. The predictive analysis system 120 and the
client device 140 are in communication via a network 150.
The backend system 110 of the present example comprises a
server or collection of servers. The server or servers of the
backend system 110 may be a computing device, such as
computing device 700 of FIG. 7, and/or the server or servers
may be configured otherwise. In some instances, the backend
system 110 may comprise several computing devices, such as
a cloud server, etc. In some implementations, the backend
system 110 may include a database from which the underly-
ing data for a predictive algorithm may be retrieved, such as
by views that may be part of a database accessing product,
such as SAP®’s HANA Analytics Foundation product. The
database schema information of the backend database, such
as SAP®’s Business Warehouse solution, may be exposed as
part of the SAP® HANA Analytics Foundation product to
give access to the entire business warehouse database with
meaningful names and relations between the tables. In the
present example, the backend system 110 may be the HANA
platform offered by SAP®.

The predictive analysis system 120 is in communication
with the backend system 110 to acquire data from a data store
of the backend system 110. In some implementations, the
predictive analysis system 120 and the backend system 110
may be part of the same system or may be separate systems.
The predictive analysis system 120 includes a predictive
analysis server 122 and a predictive analysis data store 130.
The predictive analysis server 122 may be a server or several
servers. In some instances, the predictive analysis server 122
may comprise several computing devices, such as a cloud
server, etc. The predictive analysis server 122 is communica-

25

40

45

55

6

tively coupled to the predictive analysis data store 130 to
transmit, store, and/or receive data. The predictive analysis
data store 130 may be local to the predictive analysis server
122 or may be remote from the predictive analysis server 122.
The predictive analysis data store 130 of the present example
may comprise a separate computing device, several comput-
ing devices, a tangible computer-readable data storage
device, several tangible computer-readable data storage
devices, etc. The predictive analysis data store 130 is config-
ured to store data, such as predicted data, and/or other data. In
the present example, the predictive analysis data store 130
stores predicted data or values such that a visualization mod-
ule 144 of the client device 140 can retrieve the predicted data
or values to present an end user with appropriate reports/
visualizations. Such predicted data or values may be used for
business analytics and/or other purposes.

The predictive analysis server 122 includes a data acquisi-
tion module 124, an algorithm module 126, and a data writer
module 128. The data acquisition module 124 is configured to
acquire data from a data store of the backend system 110 that
can be used with an algorithm of the algorithm module 126 to
present an end user with predicted reports. In the present
example, the data acquisition module 124 is configured to
determine and retrieve the corresponding data from the back-
end system 110 based on the algorithm selected by the algo-
rithm module 126.

The algorithm module 126 contains a set of algorithms
which may be used for perspective analysis to generate appro-
priate reports for an end user. The algorithm module 126 may
be configured to select corresponding algorithms based on the
desired report to be generated. The algorithm module 126
interacts with the data acquisition module 124 to request the
corresponding data from the backend system 110. The algo-
rithm module 126 is further configured to utilize the selected
algorithm and the corresponding data to generate predicted
data or values, such as, for example, sale projection predicted
data etc. In some implementations, as will be described in
greater detail herein, the corresponding data may be modified
to remove outliers from the data set.

The data writer module 128 is configured to receive the
predicted data from the algorithm module 126 and to save or
otherwise store the predicted values in the predictive analysis
data store 130 such that a visualization module 144 of the
client device 140 can use the predicted data and present an end
user with appropriate reports/visualizations.

The predictive analysis system 120 may also include a
communications module, such as communications module
740 of FIG. 7, for providing a communication link between
the predictive analysis system 120 and the network 150. As
such, the communications module enables the predictive
analysis system 120 to communicate, wired or wirelessly,
with other electronic systems such as client device 140, in
communication with the network 150. For instance, the com-
munications module may be coupled to an Ethernet line that
connects the predictive analysis system 120 to the Internet or
another network 150. In other implementations, the commu-
nications module may be coupled to an antenna and provides
functionality to transmit and receive information over a wire-
less communication interface with the network 150.

The client device 140 may be a computing device, such as
computing device 700 of FIG. 7. The client device 140 may
include a user interface for accessing and/or otherwise inter-
acting with the predictive analysis system 120. For example,
the user interface may be provided by a local application, a
web application, and/or any other method for allowing a user
of the client device 140 to provide input and receive output
from the predictive analysis system 120. In one implementa-

US 9,348,878 B2

7

tion, the user interface may be provided via an application
executing on the client device 140. In another implementa-
tion, the user interface may be provided via HTMLS or Java-
Script on a web browser of the client device 140. Of course
other ways of providing a user interface may be implemented
as well.

The client device 140 includes a request processing module
142 and a visualization module 144. The request processing
module 142 is configured to receive a request for predicted
data or values from the end user and send the request to the
predictive analysis server 122. The request processing mod-
ule 142 is further configured to receive the predicted data or
values that are generated by the predicted analysis server 122.
In some implementations, the request processing module 142
may retrieve the predicted data or values from the predicted
analysis data store 130. The visualization module 144 is con-
figured to use the predicted values to create or generate a
visualization using the predicted data and displays the visu-
alization on a display of the client device 140 to the end user.

FIG. 2 is a block diagram of the predictive analysis server
122 and data acquisition module 124. The data acquisition
module 124 includes an automatic outlier detecting module
200. The automatic outlier detecting module 200 is config-
ured to determine outliers in a data set acquired by data
acquisition module 124. The outliers determined by auto-
matic outlier detecting module 200 are then removed from the
data set such that the outliers may not be stored in the predic-
tive analysis data store 130 and therefore not provided to the
client device 140 during a request for predicted data.

The automatic outlier detecting module 200 first calculates
a Fuclidean distance of each point or value in the data set from
the point’s or value’s k nearest neighbors. The k value may be
a predetermined number of other nearest values that is a
user-defined number (e.g., the value for k may be received via
a user interface). In other implementations, the predeter-
mined number of other nearest values may be determined
based, at least in part, on a number of values of the data set.
For example, the predetermined number of other nearest val-
ues may be a value equal to 5% of the total number of values
in the data set. In other implementations, the predetermined
number of other nearest values may be a value equal to 10%,
2.5%, 2%, 1%, 0.5%, 0.1%, etc. of the total number of values
in the data set. The average of the Euclidean distances are then
calculated, and an average distance for each point or value is
assigned to the point or value. The data set is then sorted based
on the average distances. For example, a list of distances
(referred to as list below) may be generated. The list may be
sorted in ascending order of distances, with a length (number
of data points) equal to L.

The automatic outlier detecting module 200 may then use
an iterative approach to identify outliers from the data set
based on the list. The automatic outlier detecting module 200
removes the outliers without any user input, e.g., without the
user specifying any number of values to remove from the data
set. The iterative process of identifying outliers is described in
greater detail in the flow chart of the process 300 of FIG. 3.

While the automatic outlier detecting module 200 is shown
as part of the data acquisition module 124, in other embodi-
ments; the automatic outlier detecting module 200 may alter-
natively, or additionally, be included as part of any portion of
the predictive analysis system 120 and/or backend system
110. For example, an automatic outlier detecting module may
be implemented by the backend system 110 to remove outlier
data before sending data to the data acquisition module 124.
As another example, the data writer module 128 may include

10

15

20

25

30

35

40

45

50

55

60

65

8

an automatic outlier detecting module for removing outlier
data before writing predicted data to the predictive analysis
data store 130.

1II. EXAMPLE PROCESSES

FIG. 3 is a flow diagram for an example iterative approach
to automatically detect outliers in a data set. The process 300
illustrated in FIG. 3 may be executed by, for example, the
automatic outlier detecting module 200. The process 300 may
receive a list of average distances for data points in the data set
calculated by the automatic outlier detecting module 200.

The process 300 includes calculating a mean and average
deviation of the list (block 302). Block 302 includes calcu-
lating the mean of the distances (e.g., the average distance for
all data points) and an average deviation (e.g., a single value
representing how much, on average, each data point deviates
from the mean). The process 300 then includes determining if
the average deviation is equal to zero (block 304). If the
average deviation is equal to zero, it means that no value or
point in list deviates in value from the other values or points
in list. Therefore, there may be no outliers present in list. If the
average deviation is not equal to zero, then there may be
outliers in the data.

If the average deviation is equal to zero, the process 300
includes determining iflist is in its first iteration in the process
300 (block 306). If the average deviation is zero, and list is in
its first iteration, then it means that every data point in the data
set received by the automatic outlier detecting module 200
may be an outlier. For example, a faulty data set may include
the same value. e.g., 0, which may indicate that all the values
of'list are outliers (or otherwise unusable). The process 300 is
terminated (block 310) with the determination that each data
point is an outlier. If list is in its second (or later) iteration,
then it means that all outlier data points have been removed
from the current list. The process 300 is terminated (block
308) with the determination that all points currently in list are
not outliers, and that the data points in list are to be used by
predictive analysis server.

If the average deviation is not equal to zero in block 304,
then outliers may need to be removed from list. The process
300 then includes calculating the deviation of each point or
value of the list from the mean (block 312). The process 300
includes selecting points or values for which the calculated
deviation of the point or value is greater than the calculated
mean (block 314). The selected points or values are used to
generate a second list.

The process 300 includes determining if the length of the
generated second list is zero (i.e., if no points or values were
selected for the second list) (block 316). If not, the process
300 may iteratively repeat. A mean and average deviation of
the second list is calculated (block 302), and the process 300
may repeat for the new list. This new, second list contains
possible outliers of the data set, while non-outlier data points
are not included in the second list. If the length of the second
list is zero, then the previous list is retrieved and assigned as
a final list (block 318). This previous list contains all outliers
in the data set. The process 300 terminates (block 310) with
the determination that each data point in the list is an outlier.

The process 300 may iterate until all data points remaining
in the list are determined to be outliers, unless if in a first
iteration it is determined that there are no outliers. The pro-
cess 300 continues to drop non-outlier data from each itera-
tive list in which the dropped data is data within a desired
deviation of the mean of the list.

FIG. 4 is a flow diagram of an example process 400 for
automatically detecting outliers in a data set. The process 400

US 9,348,878 B2

9

may be generally executed by, for example, an automatic
outlier detecting module 200. The process 400 includes
receiving a data set having a plurality of values (block 410).
The data set may be a data set requested by a predictive
analysis server 122 and provided by a backend server 110 as
described above. The process 400 further includes calculating
a set of distances of each value to a predetermined number of
nearest values ofthe data set (block 420). The distance of each
value may be indicative of if the value is an outlier compared
to other values. The process 400 further includes calculating
an average distance of each value based on the set of distances
(block 430). The average distance represents, on average,
how much each value deviates from its neighboring values.
The process 400 further includes determining a set of values
of the plurality of values of the data set as a set of outliers
(block 440). In some implementations, display data to indi-
cate the set of outliers may be generated and/or outputted to
effect display indicative of the set of outliers. For example, a
pop-up window may be generated to indicate the set of out-
liers. In other implementations the set of outliers may popu-
late a field.

FIG. 5 is a flow diagram of an example sub-process that
may be implemented to iteratively automatically detect out-
liers in a data set that may be implemented with the process of
FIG. 4. In the present example, the process may be imple-
mented as part of the determination of a set of values of the
plurality of values of the data set as a set of outliers (block 440
of FIG. 4).

The sub-process includes generating a list based on the
plurality of values and the average distance for each value of
the plurality of values (block 442). The list may be sorted
based on the average distances, ascending in order.

The sub-process further includes calculating a mean of the
generated list and an average deviation of the generated list
(block 444). The mean is the average distance for all data
points and the average deviation is a value representing how
much, on average, each data point deviates from the mean.
The sub-process further includes calculating a deviation from
the calculated mean for each value of the list (block 446). The
sub-process further includes determining if a deviation for a
point is greater than the calculated mean (block 448). The
sub-process further includes determining a set of values hav-
ing a calculated deviation greater than the calculated mean if
a deviation is greater than the mean (block 450). The set of
values are a set of values that may be outliers. Values not in the
set of values determined at block 450 are data values that are
determined not to be outliers.

The sub-process further includes setting the set of values as
the list, such as a second list, if a deviation is greater than the
calculated mean (block 452). If the deviation is greater than
the calculated mean, then the list may include outlier data and
non-outlier data and the sub-process may repeat at block 442
with the new set of values. If the deviation is not greater than
the calculated mean, then each value in the set of values is an
outlier and the list is set as the set of outliers for the original
data set (block 454).

FIG. 6 is a flow diagram of another example process 500
for iteratively automatically detecting outliers in a data set.
The process 500 may be generally executed by, for example,
an automatic outlier detecting module 200. The process 500
includes receiving a data set having a plurality of values
(block 502). The data set may be a data set requested by a
predictive analysis server 122 and provided by a backend
server 110 as described above. The process 500 further
includes calculating a set of distances of each value to a
predetermined number of nearest values of the data set (block
504). The distance of each value may be indicative of if the

20

40

45

10

value is an outlier compared to other values. The process 500
further includes calculating an average distance of each value
based on the set of distances (block 506). The average dis-
tance represents, on average, how much each value deviates
from its k neighboring values.

The process 500 includes generating a list based on the
plurality of values and the average distance for each value of
the plurality of values (block 508). The list may be sorted
based on the average distances and may be sorted into ascend-
ing order. Process 500 further includes calculating a mean of
the generated list and an average deviation of the generated
list (block 510). The mean is the average distance for all data
points and the average deviation is a value representing how
much, on average, each data point deviates from the mean.
Process 500 further includes calculating a deviation from the
calculated mean for each value of the list (block 512). Process
500 further includes determining a set of values having a
calculated deviation greater than the calculated mean if a
deviation is greater than the mean (block 514). If the deviation
for a value of the set of values is greater than the calculated
mean, then the value may be an outlier. Values not in the set of
values determined at block 514 are data values that are deter-
mined not to be outliers. If the deviation is greater than the
calculated mean, then the list may include outlier data and
non-outlier data, and the process 500 may repeat at block 508
with the new set of values. If no deviations are not greater than
the calculated mean, then each value in the set of values is an
outlier, and the list is set as the set of outliers for the original
data set (block 516). In some implementations, display datato
indicate the set of outliers may be generated and/or outputted
to effect display indicative of the set of outliers. For example,
a pop-up window may be generated to indicate the set of
outliers. In other implementations the set of outliers may
populate a field.

IV. EXAMPLE APPLICATIONS

The following are examples utilizing the foregoing pro-
cesses described above on various example data sets. In the
first example, a dataset with 50 data points is provided. While
applying a KNN algorithm, an average distance is calculated
for each point from the point’s nearest k neighbors (i.e., as
performed in block 430 and block 506) and are sorted accord-
ing to the average distance. Let k=5 for this example. The
sorted list of the 50 data points is as shown below:

Average distance

Data Points from 5 neighbors Devn.
Mean 55.29796 59 0.8 54.49796
avg. devn 97.4289 59 0.8 54.49796

59 0.8 54.49796
45 1 54.29796
45 1 54.29796
44 1 54.29796
61 1.2 54.09796
90 1.2 54.09796
43 1.2 54.09796
90 1.2 54.09796
61 1.2 54.09796
54 1.4 53.89796
54 1.4 53.89796
47 1.4 53.89796
53 1.4 53.89796
47 1.4 53.89796
89 1.4 53.89796
34 1.6 53.69796
27 1.6 53.69796
27 1.6 53.69796

US 9,348,878 B2

11
-continued
Average distance

Data Points from 5 neighbors Devn.
35 1.8 53.49796
57 1.8 53.49796
51 1.8 53.49796
28 1.8 53.49796
42 1.8 53.49796
32 2 53.29796
50 2 53.29796
88 2 53.29796
31 2.2 53.09796
76 2.2 53.09796
77 2.2 53.09796
36 24 52.89796
74 24 52.89796
80 2.8 52.49796
72 2.8 52.49796
93 3 52.29796
64 3.2 52.09796
24 3.2 52.09796
81 34 51.89796
69 4 51.29796
16 4.4 50.89796
18 4.8 50.49796
11 54 49.89796
9 6.6 48.69796
99 6.8 48.49796

999 512.6 457.302

1000 512.8 457.502

1755 696.6 641.302

2071 886.2 830.902

The example will be described with reference to the pro-
cess 300 of FIG. 3. Corresponding to block 302 the calculated
mean for this dataset is 55.297 and the average deviation is
97.429. Since the average deviation is not equal to zero (block
304), the process 300 proceeds to block 312, and the deviation
for each point from the mean is calculated (block 312). This is
given in the table above in the third column labeled Devn.
Points where the Devn column are greater than the mean of
55.297 are selected (block 314). Such values, i.e., the last four
values, are highlighted in bold in the above table. These points
may be selected as points for a new list. Since the new list has
four points (block 316), the next step is to calculate the mean
and average deviation for this new list (block 302). This is an
iterative step. The below table gives the new list and new
calculated values. The mean is 652.05 and the average devia-
tion is 139.35.

Average
Data Points Distance from 5 neighbors ~ Devi.
Mean 652.05 999 512.6 139.45
avg. devn 139.35 1000 512.8 139.25
1755 696.6 44.55
2071 886.2 234.15

Since the average deviation is not equal to zero (step 304),
the process 300 proceeds to block 312, and the deviation for
each point from the mean is calculated. This is given in the
table above in the third column named Devn. Points where the
Devn column are greater than the Mean of 652.05 are selected
(block 314). This yields no points since none of the deviations
are greater than 652.05. Since the new listis of zero length (no
points at all) (block 316), the process 300 terminates with the
result that the four points selected in the second iteration are
all outliers (block 310). Hence the outliers may be automati-
cally detected as the points: 999, 1000, 1755 and 2071.

Another example application of outlier detection may be in
a wildlife census context. In the wild, it is almost impossible

10

15

20

40

45

50

12

to get consolidated information of the animals living in an
area and also to find the group and gender of the animal,
without the use of sophisticated technology. The usual
mechanism used by wildlife experts relying solely on actual
enumeration is to make use of the vital signs or impressions
left behind by the animals on the move. One such impression
that is collected is the measurement of pug marks (i.e., foot or
paw print of an animal). The foot prints of tigers differ with
the gender and the collected measurements could be clustered
to know the presence of both genders of the animal in that
area. However it’s likely that the readings may have some
faulty readings that may not belong to a tiger. This may occur
as a result of human error when a pug mark is assumed to be
of'tiger, but is actually from a different animal of the same or
a similar family (e.g., a lion, a puma etc.). Consider a sample
set of measurements as shown below:

Measurement Pug Mark Sizes in cm.
1 118
2 110
3 129
4 120
5 112
6 87
7 109
8 119
9 106

10 120
11 98
12 97
13 99
14 99
15 105
16 99
17 98
18 98
19 99
20 96

Suppose that we need to discover whether all these mea-
surements are pug marks of tigers or not. Applying the pro-
cesses described herein, such as process 300 to the data given
in the table, we see that two outliers may be detected, mea-
surement 3 (129 cm.) and measurement 6 (87 cm.).

The advantage that a wildlife expert may gain by using the
auto-detection algorithm for outliers is that the wildlife expert
does not have to worry about specifying how many outliers to
remove. The processes described herein automatically detect
the outliers and may in some implementations, inform the
user of the outliers (e.g., outputting data to effect display of
information indicative of the automatically determined out-
liers). In the present example, the outliers detected are mea-
surements 3 and 6, which may belong to some other animal
than a tiger.

FIG. 71is ablock diagram of a computer system 700 that can
be used to implement the client device 140, the predictive
analysis server 722, the backend system 110, and/or any other
computing device described herein. The computing system
700 includes a bus 705 or other communication component
for communicating information and a processor 710 or pro-
cessing module coupled to the bus 705 for processing infor-
mation. The computing system 700 also includes main
memory 715, such as a RAM or other dynamic storage
device, coupled to the bus 705 for storing information, and
instructions to be executed by the processor 710. Main
memory 715 can also be used for storing position informa-
tion, temporary variables, or other intermediate information
during execution of instructions by the processor 710. The
computing system 700 may further include a ROM 720 or

US 9,348,878 B2

13

other static storage device coupled to the bus 705 for storing
static information and instructions for the processor 710. A
storage device 725, such as a solid state device, magnetic disk
or optical disk, is coupled to the bus 705 for persistently
storing information and instructions. Computing device 700
may include, but is not limited to, digital computers, such as
laptops, desktops, workstations, personal digital assistants,
servers, blade servers, mainframes, cellular telephones, smart
phones, mobile computing devices (e.g., a notepad, e-reader,
etc.) etc.

The computing system 700 may be coupled via the bus 705
to a display 735, such as a Liquid Crystal Display (LCD),
Thin-Film-Transistor LCD (TFT), an Organic Light Emitting
Diode (OLED) display, LED display. Electronic Paper dis-
play, Plasma Display Panel (PDP), and/or other display, etc.,
for displaying information to a user. An input device 730,
such as a keyboard including alphanumeric and other keys
may be coupled to the bus 705 for communicating informa-
tion and command selections to the processor 710. In another
implementation, the input device 730 may be integrated with
the display 735, such as in a touch screen display. The input
device 730 can include a cursor control, such as a mouse, a
trackball, or cursor direction keys, for communicating direc-
tion information and command selections to the processor
710 and for controlling cursor movement on the display 735.

According to various implementations, the processes and/
or methods described herein can be implemented by the com-
puting system 700 in response to the processor 710 executing
an arrangement of instructions contained in main memory
715. Such instructions can be read into main memory 715
from another computer-readable medium, such as the storage
device 725. Execution of the arrangement of instructions
contained in main memory 715 causes the computing system
700 to perform the illustrative processes and/or method steps
described herein. One or more processors in a multi-process-
ing arrangement may also be employed to execute the instruc-
tions contained in main memory 715. In alternative imple-
mentations, hard-wired circuitry may be used in place of or in
combination with software instructions to effect illustrative
implementations. Thus, implementations are not limited to
any specific combination of hardware circuitry and software.

The computing system 700 also includes a communica-
tions module 740 that may be coupled to the bus 705 for
providing a communication link between the system 700 and
a network 150. As such, the communications module 740
enables the processor 710 to communicate, wired or wire-
lessly, with other electronic systems coupled to the network
150. For instance, the communications module 740 may be
coupledto an Ethernet line that connects the system 700 to the
Internet or another network 150. In other implementations,
the communications module 740 may be coupled to an
antenna (not shown) and provides functionality to transmit
and receive information over a wireless communication inter-
face with the network 150.

In various implementations, the communications module
740 may include one or more transceivers configured to per-
form data communications in accordance with one or more
communications protocols such as, but not limited to, WLAN
protocols (e.g., IEEE 802.5 a/b/g/n/ac/ad, IEEE 802.16, IEEE
802.20, etc.), PAN protocols, Low-Rate Wireless PAN pro-
tocols (e.g., ZigBee, IEEE 802.15.4-2003), Infrared proto-
cols, Bluetooth protocols, EMI protocols including passive or
active RFID protocols, and/or the like.

The communications module 740 may include one or more
transceivers configured to communicate using different types
of protocols, communication ranges, operating power
requirements, RF sub-bands, information types (e.g., voice or

10

15

20

25

30

35

40

45

50

55

60

65

14

data), use scenarios, applications, and/or the like. In various
implementations, the communications module 740 may com-
prise one or more transceivers configured to support commu-
nication with local devices using any number or combination
of communication standards.

In various implementations, the communications module
740 can also exchange voice and data signals with devices
using any number or combination of communication stan-
dards (e.g., GSM, CDMA, TDNM, WCDMA, OFDM,
GPRS, EV-DO, WiFi, WIMAX, S02.xx, UWB, LTE, satel-
lite, etc). The techniques described herein can be used for
various wireless communication networks 150 such as Code
Division Multiple Access (CDMA) networks, Time Division
Multiple Access (TDMA) networks, Frequency Division
Multiple Access (FDMA) networks, Orthogonal FDMA
(OFDMA) networks, Single-Carrier FDMA (SC-FDMA)
networks, etc. A CDMA network can implement a radio
technology such as Universal Terrestrial Radio Access
(UTRA), cdma2000, etc. UTRA includes Wideband-CDMA
(W-CDMA) and Low Chip Rate (LCR). CDMA2000 covers
1S-2000, IS-95, and 1S-856 standards. A TDMA network can
implement a radio technology such as Global System for
Mobile Communications (GSM). An OFDMA network can
implement a radio technology such as Evolved UTRA
(E-UTRA), IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-
OFDM, etc. UTRA, E-UTRA, and GSM are part of Universal
Mobile Telecommunication System (UMTS). Long Term
Evolution (LTE) is an upcoming release of UMTS that uses
E-UTRA. UTRA, E-UTRA, GSM, UMTS, and LTE are
described in documents from an organization named “3rd
Generation Partnership Project” (3GPP). CDMA2000 is
described in documents from an organization named “3rd
Generation Partnership Project 2” (3GPP2).

Although an example computing system 700 has been
described in FI1G. 7 implementations of the subject matter and
the functional operations described in this specification can
be implemented in other types of digital electronic circuitry,
orincomputer software, firmware, or hardware, including the
structures disclosed in this specification and their structural
equivalents, or in combinations of one or more of them.

Implementations of the subject matter and the operations
described in this specification can be implemented in digital
electronic circuitry, or in computer software embodied on a
non-transitory tangible medium, firmware, or hardware,
including the structures disclosed in this specification and
their structural equivalents, or in combinations of one or more
of'them. The subject matter described in this specification can
be implemented as one or more computer programs. i.e., one
or more modules of computer program instructions, encoded
onone or more computer storage media for execution by, or to
control the operation of, data processing apparatus. Alterna-
tively or in addition, the program instructions can be encoded
on an artificially generated propagated signal, e.g., a
machine-generated electrical, optical, or electromagnetic sig-
nal thatis generated to encode information for transmission to
suitable receiver apparatus for execution by a data processing
apparatus. A computer storage medium can be, or be included
in, a computer-readable storage device, a computer-readable
storage substrate, a random or serial access memory array or
device, or a combination of one or more of them. Moreover,
while a computer storage medium is not a propagated signal,
a computer storage medium can be a source or destination of
computer program instructions encoded in an artificially gen-
erated propagated signal. The computer storage medium can
also be, or be included in, one or more separate components or

US 9,348,878 B2

15

media (e.g., multiple CDs, disks, or other storage devices).
Accordingly, the computer storage medium is both tangible
and non-transitory.

The operations described in this specification can be per-
formed by a data processing apparatus on data stored on one
or more computer-readable storage devices or received from
other sources.

The term “data processing apparatus” or “computing
device” or “processing circuit” encompasses all kinds of
apparatus, devices, and machines for processing data, includ-
ing by way of example a programmable processor, a com-
puter, a system on a chip, or multiple ones, a portion of a
programmed processor, or combinations of the foregoing.
The apparatus can include special purpose logic circuitry,
e.g., an FPGA or an ASIC. The apparatus can also include, in
addition to hardware, code that creates an execution environ-
ment for the computer program in question, e.g., code that
constitutes processor firmware, a protocol stack, a database
management system, an operating system, a cross-platform
runtime environment, a virtual machine, or a combination of
one or more of them. The apparatus and execution environ-
ment can realize various different computing model infra-
structures such as web services, distributed computing and
grid computing infrastructures.

A computer program (also known as a program, software,
software application, script, or code) can be written in any
form of programming language, including compiled or inter-
preted languages, declarative or procedural languages, and it
can be deployed in any form, including as a standalone pro-
gram or as a module, component, subroutine, object, or other
unit suitable for use in a computing environment. A computer
program may but need not, correspond to a file in a file
system. A program can be stored in a portion of a file that
holds other programs or data (e.g., one or more scripts stored
in a markup language document), in a single file dedicated to
the program in question, or in multiple coordinated files (e.g.,
files that store one or more modules, sub programs, or por-
tions of code). A computer program can be deployed to be
executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and
interconnected by a communication network.

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing actions in accor-
dance with instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., a mobile telephone, a personal digital assistant (PDA) a
mobile audio or video player, a game console, a Global Posi-
tioning System (GPS) receiver, or a portable storage device
(e.g., auniversal serial bus (USB) flash drive), to name just a
few. Devices suitable for storing computer program instruc-
tions and data include all forms of non-volatile memory,
media and memory devices, including by way of example
semiconductor memory devices, e.g., EPROM, EEPROM,
and flash memory devices; magnetic disks, e.g., internal hard
disks or removable disks; magneto optical disks; and CD

20

25

40

45

50

16
ROM and DVD disks. The processor and the memory can be
supplemented by, or incorporated in, special purpose logic
circuitry.

To provide for interaction with a user, embodiments of the
subject matter described in this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD monitor, for displaying informa-
tion to the user and a keyboard and a pointing device, e.g., a
mouse or a trackball, by which the user can provide input to
the computer. Other kinds of devices can be used to provide
for interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback, e.g.,
visual feedback, auditory feedback, or tactile feedback; and
input from the user can be received in any form, including
acoustic, speech, or tactile input.

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of what may be claimed, but rather as descriptions
of features specific to particular embodiments. Certain fea-
tures described in this specification in the context of separate
embodiments can also be implemented in combination in a
single implementation. Conversely various features
described in the context of a single implementation can also
be implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
bedescribed above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments,
and it should be understood that the described program com-
ponents and systems can generally be integrated in a single
software product or packaged into multiple software products
embodied on tangible media.

References to “or” may be construed as inclusive so that
any terms described using “or” may indicate any of a single,
more than one, and all of the described terms.

Thus, particular embodiments of the subject matter have
been described. Other embodiments are within the scope of
the following claims. In some cases, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. In addition, the processes depicted in the
accompanying figures do not necessarily require the particu-
lar order shown, or sequential order, to achieve desirable
results. In certain embodiments, multitasking and parallel
processing may be advantageous.

The claims should not be read as limited to the described
order or elements unless stated to that effect. It should be
understood that various changes in form and detail may be
made by one of ordinary skill in the art without departing
from the spirit and scope of the appended claims. All embodi-
ments that come within the spirit and scope of the following
claims and equivalents thereto are claimed.

What is claimed is:

1. A method for iteratively detecting outliers comprising:

receiving, at a data processor, a data set having a plurality

of values;

for each value of the plurality of values in the data set:

US 9,348,878 B2

17

calculating, using the data processor, a set of Euclidean
distances ofthe each value to a predetermined number
of other nearest values of the plurality of values in the
data set; and

calculating, using the data processor, an average dis-
tance of the each value based on the set of Euclidean
distances;

generating, using the data processor, a first list based on the

plurality of values and the average distance for each
value of the plurality of values;

sorting, using the data processor, the generated first list

based on the average distance for each value of the
plurality of values;

calculating, using the data processor, a first mean of the

generated first list and a first average deviation of the
generated first list;
calculating, using the data processor, for each value of the
first list, a first deviation from the calculated first mean;

determining, using the data processor, a set of values hav-
ing a calculated first deviation greater than the calculated
first mean;

generating, using the data processor, a second list based on

the determined set and the average distance for each
value of the determined set;

calculating, using the data processor, a second mean of the

generated second list and a second average deviation of
the generated second list;

calculating, using the data processor, for each value of the

generated second list, a second deviation from the cal-
culated second mean; and

determining, using the data processor, a set of values of the

plurality of values of the data set as a set of outliers based
on the second list, the calculated second mean, and the
calculated second deviation for each value of the gener-
ated second list.

2. The method of claim 1 further comprising:

determining, using the data processor, ifa second deviation

is greater than the calculated second mean.

3. The method of claim 2 further comprising:

if a second deviation is greater than the calculated second

mean:

determining, using the data processor, a second set of
values having a calculated second deviation greater
than the calculated second mean;

generating, using the data processor, a third list based on
the determined second set and the average distance for
each value of the determined second set;

calculating, using the data processor, a third mean of the
generated third list and a third average deviation of the
generated third list; and

calculating, using the data processor, for each value of
the generated third list, a third deviation from the
calculated third mean.

4. The method of claim 2, wherein, if no second deviation
is greater than the calculated second mean, the determination
of'the set of values of the plurality of values of the data set as
the set of outliers comprises setting the generated second list
as the set of outliers.

5. The method of claim 1 further comprising:

determining, using the data processor, if the second aver-

age deviation is equal to zero.

6. The method of claim 5, wherein, if the second average
deviation is equal to zero, the determination of the set of
values of the plurality of values of the data set as the set of
outliers comprises setting the generated second list as the set
of outliers.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

7. The method of claim 1, wherein the predetermined num-
ber of other nearest values is a user-defined number.

8. The method of claim 1, wherein the predetermined num-
ber of other nearest values is determined based, atleast in part,
on a number of values of the plurality of values of the data set.

9. A system comprising:

one or more data processors; and

a non-transitory computer-readable storage device storing

instructions that, when executed by the one or more data
processors, cause the one or more data processors to
perform operations comprising:
receiving a data set having a plurality of values;
for each value of the plurality of values in the data set:
calculating a set of Euclidean distances of the each
value to a predetermined number of other nearest
values of the plurality of values in the data set; and
calculating an average distance of the each value
based on the set of Euclidean distances; and
determining a set of values of the plurality of values of
the data set as a set of outliers, wherein the determi-
nation comprises:
generating a list based on the plurality of values and
the average distance for each value of the plurality
of values,
calculating a mean ofthe generated list and an average
deviation of the generated list,
calculating, for each value of the list, a deviation from
the calculated mean,
determining if a deviation is greater than the calcu-
lated mean;
if a deviation is greater than the calculated mean:
determining a set of values having a calculated
deviation greater than the calculated mean, and
setting the set of values having a calculated devia-
tion greater than the calculated mean as the list,
and
if a deviation is not greater than the calculated mean,
setting the list as the set of outliers.

10. The system of claim 9, wherein the determination fur-
ther comprises:

determining if the average deviation is equal to zero.

11. The system of claim 10, wherein, if the average devia-
tion is equal to zero, the determination further comprises:

setting the list as the set of outliers.

12. The system of claim 10, wherein the determination
iterates until a deviation is not greater than the calculated
mean or an average deviation is equal to zero.

13. The system of claim 9, wherein the predetermined
number of other nearest values is a user-defined number.

14. The system of claim 9, wherein the predetermined
number of other nearest values is determined based, at least in
part, on a number of values of the plurality of values of the
data set.

15. A non-transitory computer-readable storage device
storing instructions that, when executed by one or more pro-
cessors, cause the one or more processors to perform opera-
tions comprising:

receiving a data set having a plurality of values;

for each value of the plurality of values in the data set:

calculating a set of Fuclidean distances of the each value
to a predetermined number of other nearest values of
the plurality of values in the data set; and

calculating an average distance of the each value based
on the set of Euclidean distances;

generating a first list based on the plurality of values and

the average distance for each value of the plurality of
values;

US 9,348,878 B2

19

calculating a first mean of the generated first list and a first
average deviation of the generated first list;

determining if the first average deviation is equal to zero;

if the first average deviation is equal to zero, setting the first
list as a set of outliers; and

if the first average deviation is not equal to zero,

calculating, for each value of the first list, a first devia-
tion from the calculated first mean;
determining if a first deviation is greater than the calcu-
lated first mean;
if a first deviation is greater than the calculated first
mean:
determining a set of values having a calculated first
deviation greater than the calculated first mean; and
generating a second list based on the determined set
and the average distance for each value of the deter-
mined set; and
if a first deviation is not greater than the calculated first
mean, setting the first list as the set of outliers.

16. The non-transitory computer-readable storage device
of claim 15 storing instructions that cause the one or more
processors to perform operations further comprising:

sorting the generated first list based on the average distance

for each value of the plurality of values in an ascending
order.

17. The non-transitory computer-readable storage device
of claim 15 storing instructions that cause the one or more
processors to perform operations further comprising:

calculating a second mean of the generated second list and

a second average deviation of the generated second list;
determining if the second average deviation is equal to
Zero;

10

15

20

25

30

20

if the second average deviation is equal to zero, setting the

second list as the set of outliers; and

if the second average deviation is not equal to zero,

calculating, for each value of the second list, a second
deviation from the calculated second mean;
determining if a second deviation is greater than the
calculated second mean;
if a second deviation is greater than the calculated sec-
ond mean:
determining a second set of values having a calculated
second deviation greater than the calculated second
mean; and
generating a third list based on the determined second
set and the average distance for each value of the
determined second set; and
if a second deviation is not greater than the calculated
second mean, setting the second list as the set of
outliers.

18. The non-transitory computer-readable storage device
of claim 15, wherein the predetermined number of other
nearest values is a user-defined number.

19. The non-transitory computer-readable storage device
of claim 15, wherein the predetermined number of other
nearest values is determined based, at least in part, on a
number of values of the plurality of values of the data set.

20. The non-transitory computer-readable storage device
of claim 15 storing instructions that cause the one or more
processors to perform operations further comprising:

generating display data to indicate the set of outliers.

#* #* #* #* #*

